p-group, metabelian, nilpotent (class 2), monomial
Aliases: C22⋊C8, C4.16D4, C23.2C4, C2.2M4(2), (C2×C8)⋊1C2, (C2×C4).3C4, C2.1(C2×C8), (C22×C4).2C2, C22.8(C2×C4), C2.2(C22⋊C4), (C2×C4).32C22, SmallGroup(32,5)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22⋊C8
G = < a,b,c | a2=b2=c8=1, cac-1=ab=ba, bc=cb >
Character table of C22⋊C8
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | i | -i | i | -i | -i | i | i | -i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -i | i | -i | i | i | -i | -i | i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | -i | i | -i | i | i | -i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | i | -i | i | -i | -i | i | linear of order 4 |
ρ9 | 1 | -1 | 1 | -1 | 1 | -1 | i | i | -i | -i | -i | i | ζ83 | ζ8 | ζ87 | ζ85 | ζ8 | ζ83 | ζ87 | ζ85 | linear of order 8 |
ρ10 | 1 | -1 | 1 | -1 | 1 | -1 | -i | -i | i | i | i | -i | ζ8 | ζ83 | ζ85 | ζ87 | ζ83 | ζ8 | ζ85 | ζ87 | linear of order 8 |
ρ11 | 1 | -1 | 1 | -1 | 1 | -1 | i | i | -i | -i | -i | i | ζ87 | ζ85 | ζ83 | ζ8 | ζ85 | ζ87 | ζ83 | ζ8 | linear of order 8 |
ρ12 | 1 | -1 | 1 | -1 | 1 | -1 | -i | -i | i | i | i | -i | ζ85 | ζ87 | ζ8 | ζ83 | ζ87 | ζ85 | ζ8 | ζ83 | linear of order 8 |
ρ13 | 1 | -1 | 1 | -1 | -1 | 1 | -i | -i | i | i | -i | i | ζ85 | ζ87 | ζ8 | ζ83 | ζ83 | ζ8 | ζ85 | ζ87 | linear of order 8 |
ρ14 | 1 | -1 | 1 | -1 | -1 | 1 | i | i | -i | -i | i | -i | ζ83 | ζ8 | ζ87 | ζ85 | ζ85 | ζ87 | ζ83 | ζ8 | linear of order 8 |
ρ15 | 1 | -1 | 1 | -1 | -1 | 1 | -i | -i | i | i | -i | i | ζ8 | ζ83 | ζ85 | ζ87 | ζ87 | ζ85 | ζ8 | ζ83 | linear of order 8 |
ρ16 | 1 | -1 | 1 | -1 | -1 | 1 | i | i | -i | -i | i | -i | ζ87 | ζ85 | ζ83 | ζ8 | ζ8 | ζ83 | ζ87 | ζ85 | linear of order 8 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | -2 | 2 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ20 | 2 | -2 | -2 | 2 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
(2 12)(4 14)(6 16)(8 10)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 9)(8 10)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
G:=sub<Sym(16)| (2,12)(4,14)(6,16)(8,10), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)>;
G:=Group( (2,12)(4,14)(6,16)(8,10), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16) );
G=PermutationGroup([[(2,12),(4,14),(6,16),(8,10)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,9),(8,10)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)]])
G:=TransitiveGroup(16,24);
C22⋊C8 is a maximal subgroup of
C23⋊C8 C22.M4(2) C22.SD16 C23.31D4 C24.4C4 (C22×C8)⋊C2 C42.7C22 C8×D4 C8⋊9D4 C8⋊6D4 C22⋊D8 Q8⋊D4 D4⋊D4 C22⋊SD16 C22⋊Q16 D4.7D4 C22.D8 C23.46D4 C23.19D4 C23.47D4 C23.48D4 C23.20D4 A4⋊C8 S32⋊C8 C62.6(C2×C4) C62⋊3C8 C22⋊F9
C2p.M4(2): C42.12C4 C42.6C4 D6⋊C8 C12.55D4 D10⋊1C8 C20.55D4 D10⋊C8 C23.2F5 ...
C22⋊C8 is a maximal quotient of
C23⋊C8 C22.M4(2) Q8⋊C8 C22.7C42 C23.2F5 S32⋊C8 C62.6(C2×C4) C62⋊3C8 C22⋊F9 C26.M4(2)
D2p⋊C8: D4⋊C8 D6⋊C8 D10⋊1C8 D10⋊C8 D14⋊C8 D22⋊C8 D26⋊1C8 D26⋊C8 ...
C4p.D4: C22⋊C16 C23.C8 D4.C8 C12.55D4 C20.55D4 C28.55D4 C44.55D4 C52.55D4 ...
Matrix representation of C22⋊C8 ►in GL3(𝔽17) generated by
1 | 0 | 0 |
0 | 16 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
0 | 16 | 0 |
0 | 0 | 16 |
15 | 0 | 0 |
0 | 0 | 1 |
0 | 4 | 0 |
G:=sub<GL(3,GF(17))| [1,0,0,0,16,0,0,0,1],[1,0,0,0,16,0,0,0,16],[15,0,0,0,0,4,0,1,0] >;
C22⋊C8 in GAP, Magma, Sage, TeX
C_2^2\rtimes C_8
% in TeX
G:=Group("C2^2:C8");
// GroupNames label
G:=SmallGroup(32,5);
// by ID
G=gap.SmallGroup(32,5);
# by ID
G:=PCGroup([5,-2,2,-2,2,-2,40,61,58]);
// Polycyclic
G:=Group<a,b,c|a^2=b^2=c^8=1,c*a*c^-1=a*b=b*a,b*c=c*b>;
// generators/relations
Export
Subgroup lattice of C22⋊C8 in TeX
Character table of C22⋊C8 in TeX